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SUMMARY

This paper introduces a G space theory and a weakened weak form (W2) using the generalized gradient
smoothing technique for a unified formulation of a wide class of compatible and incompatible methods.
The W2 formulation works for both finite element method settings and mesh-free settings, and W2

models can have special properties including softened behavior, upper bounds and ultra accuracy. Part I
of this paper focuses on the theory and fundamentals for W2 formulations. A normed G space is first
defined to include both continuous and discontinuous functions allowing the use of much more types of
methods/techniques to create shape functions for numerical models. Important properties and a set of
useful inequalities for G spaces are then proven in the theory and analyzed in detail. These properties
ensure that a numerical method developed based on the W2 formulation will be spatially stable and
convergent to the exact solutions, as long as the physical problem is well posed. The theory is applicable
to any problems to which the standard weak formulation is applicable, and can offer numerical solutions
with special properties including ‘close-to-exact’ stiffness, upper bounds and ultra accuracy. Copyright �
2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

To solve engineering problems, many powerful numerical methods based on weak form formulation
have been developed, such as the finite element method (FEM) [1–3] and recently the mesh-free
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methods (see, e.g. [4–6]). The FEM is well developed and is currently the most widely used reliable
numerical tool, and many established commercial software packages available. However, there are
three major issues related to the FEM. The first issue is the ‘overly stiff’ phenomenon of a fully
compatible FEM model of assumed displacement based on the Galerkin weak form, which can
have consequences of (1) the so-called ‘locking’ behavior for many problems and (2) inaccuracy in
stress solutions. The second issue concerns with the mesh distortion-related problems such as the
significant accuracy loss when the element mesh is heavily distorted. The third issue is the mesh
generation. We, engineers, often prefer using triangular types of mesh as they can be created much
more easily and even automatically for problems of complicated geometry. However, it is well
known that the FEM does not like such elements and often give solutions of very poor accuracy.
This is the reason for analysts often getting a warning when opting for triangular elements in some
commercial software packages.

The overly stiff phenomenon is attributed to nature of the fully compatible displacement approach
based on the standard variational principle. Many efforts have been made in resolving this issue,
especially in the area of hybrid FEM formulations (see, e.g. [7, 8]). Recently, a smoothed FEM
(or SFEM) [9–11] has also been formulated by combining the FEM procedures and the gradient
smoothing operation known as distributional derivatives in classic sense. The smoothing operation
is a very useful numerical tool and has been used in various situations, such as the nonlocal
continuum mechanics [12, 13], the smoothed particle hydrodynamics (SPH) [4, 14–16], hybrid
FEMs [8], resolving the material instabilities [17] and spatial instability in nodal integrated mesh-
free methods [18], and recently obtaining upper bound solution in mesh-free point interpolation
methods [19, 20]. The SFEM also uses the smoothing operations based on cells and is found working
very effectively for solid mechanics problems and n-sided polygonal elements and very heavily
distorted mesh can be used [10]. Detailed theoretical aspects including stability and convergence
about SFEM can be found in [11]. The study of SFEM has also clearly shown that the smoothing
operation on strains controls the assumed strain field in a proper fashion to ensure the stability
and the convergence, and ultimately gives the SFEM some very good features. A more general
cell-based smoothed model is the recent cell-based smoothed point interpolation method [21] using
general PIM or RPIM shape functions.

In the other front of development related to mesh-free methods, the node-based smoothed point
interpolation method (NS-PIM)‡ has been developed recently [19, 20] using the node-based strain
smoothing operations [18] with extensions to discontinuous assumed displacement functions [22].
The NS-PIM is formulated using PIM [5, 23] or RPIM [24] shape functions of Kronecker delta for
easy treatment of essential boundary conditions. It was found that NS-PIM or (NS-RPIM [25]) is
at least linearly conforming (can always pass the standard patch tests when linear displacements
on the boundary are enforced), can produce much better stress solution, much more tolerant to
mesh distortion, works very well for triangular cells, and more importantly it provides upper bound
solution in energy norm [26]. Following further the idea of NS-PIM and SFEM, a node-based
SFEM (or NS-FEM) has also been formulated within the framework of FEM. The NS-FEM can
be viewed as a special case of NS-PIM, but based on n-sided polygonal element mesh [27], and
has quite similar properties as NS-PIM. It was found that NS-PIM and NS-FEM behave ‘overly
soft’ leading to temporal instability when used to solve dynamic problems. To reduce the softening

‡The NS-PIM was originally termed as the linearly conforming point interpolation method (LC-PIM), because it is
at least linearly conforming. We changed the name because the later formulations of cell-based and edge-based
smoothing techniques those are all at least linearly conforming, but distinct in the creation of smoothing domains.
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effects, a very effective edge-based smoothed FEM (ES-FEM) for 2D problems [28] and face-based
smoothed FEM (FS-FEM) for 3D problems [29] have been recently formulated. The ES-FEM (or
FS-FEM) not only produces accurate solution but also is temporally stable and no spurious modes
and hence works very well for dynamic problems. The linear ES-FEM using triangular mesh has
been found as much as 10 times more accurate in displacement norm than the FEM using the
same mesh, and hence known as an ‘ultra-accurate’ model with ‘close-to-exact’ stiffness. A more
general edge-based smoothed model is the recent ES-PIM [30] using general PIM or RPIM shape
functions.

In examining the above-mentioned works, we find that (1) both compatible and incompatible
displacement fields created with FEM and mesh-free settings were used; (2) the traditional weak
form is much extended in various manners by changing the bilinear form; and (3) the integration
is performed in novel ways far beyond the standard FEM procedures. It is now clearly necessary
to establish a new theoretical framework to unify the formulation of all these newly developed
element-based or mesh-free methods.

In this work, we attempt to do so by putting together the pieces of recent advances in FEM
and mesh-free methods, and establish a new G space theory and a weakened weak form (W2)

formulation as a theoretical framework for all these methods: compatible and incompatible ones.
Part I of this paper focuses on the G space theory and fundamentals for W2 formulation. We
first define a G space to include both continuous and discontinuous displacement functions using
the generalized gradient smoothing technique [22]. We then prove the important properties of the
functions in a G space, including a set of key inequalities that are the foundation for the stability and
convergence for a numerical method seeking solution in a G space. These properties ensure that a
numerical method developed based on the W2 formulation will be spatially stable, and convergent
to exact solutions, as long as the physical problem is well posed. The theory is applicable to any
problems to which the standard weak formulation is applicable, and can offer numerical solutions
with special properties including close-to-exact stiffness features, ultra accuracy and upper bounds.
The procedure of W2 formulation and the application of the W2 formulation to create models for
solid mechanics problems will be given in detail in Part II of this paper.

2. FUNCTION APPROXIMATION

We first consider the most basic issue of function approximation in general settings including the
FEM settings with a mesh of elements and mesh-free settings. Consider a d-dimensional problem
domain of �∈�d bounded by � that is ‘Lipschitzian’. By default, we speak ‘open’ domain that does
not include the boundary of the domain. When we refer to a ‘closed’ domain we will specifically
use a box: � =�∪�.

2.1. Mesh: triangulation

In this work, the problem domain is divided into cells (for mesh-free settings) or elements (for FEM
settings) of general polygons of multiple sides [11, 27]. However, we prefer triangular types of
cells/elements for easy generation for complicated domains using the well-established triangulation
algorithms such as the Delaunay algorithm. For 1D problems a cell is defined in R1 and is simply
a line segment, for 2D problems it is defined in R2 and becomes a triangle, and for 3D problems
it is defined in R3 and is tetrahedron. The domain is divided with Ne cells/elements that are
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connected at Nn nodes. The ‘length’ of the cell is denoted generally as h and it can be different
from cell to cell. For a uniform discretization, h becomes the characteristic dimension of cells. In
the case of non-uniform discretization, we let

hmax= max
i=1,...,Ne

(hi ), hmin= min
i=1,...,Ne

(hi ) (1)

and we should assume that the ratio of the smallest and largest cell dimensions is bounded:

hmax/hmin=crh<∞ (2)

In such cases, the largest hmax becomes the characteristic dimension of the cells. We require the
ratio crh to be bounded, and also the inner angles � of the triangles should be strictly larger than zero
and less than 180◦ in theory, and in practice we often require 15<�<120. Under such conditions,
the largest hmax becomes the characteristic dimension of the cells: controlling hmax puts the entire
mesh under control. When we say h approaches zero, the dimensions of all the cells in the entire
problem domain approach to zero. Our division is also seamless: � =⋃Ne

i=1 �
e
i , where the box

stands for closed domains. Such a triangulation is generally denoted as Th : a collection of all
�e
i (i=1,2, . . . ,Ne) (exclusive of the boundaries).

2.2. Basis

In any (discrete) numerical method, field functions have to be approximated over the problem
domain using a set of nodal values of the functions and the so-called basis. Given a linear space
S of dimension Nn , a set of Nn members of functions �n ∈ S,n=1,2, . . . ,Nn is a basis for S if
and only if ∀w∈ S,∃ unique �n ∈R such that

w=
Nn∑
n=1

�n�n (3)

Functions �n in the basis are often given in the form of nodal shape functions, and hence the basis
is also termed as nodal basis in the context of FEM and mesh-free methods. Equation (3) implies
that the nodal shape functions must be linearly independent. In the FEM, these linearly independent
shape functions are created based on elements using mostly polynomial basis functions, and the
linearly independence is ensured by element topology and properly controlled coordinate mapping
(see, e.g. [2]). In the mesh-free methods it is based on local nodes using both polynomial and radial
basis functions [5], generally no mapping is needed, and the linearly independence is ensured by
the use of proper basis functions and/or proper local nodes selection with the help of a background
cells [6]. The often used shape functions include: PIM, RPIM, least square (LS), moving least
square (MLS), and SPH shape functions [6]. The procedure for the creation of these types of shape
functions is rather standard and can be found in great detail in [5, 6], and hence are omitted here.
In this paper we assume that there are always a possible ways to obtain a set of independent nodal
shape functions for a given set of nodes with a set of elements or background cells in the problem
domain �.

In addition, for consistence reasons, we require this set of nodal shape functions being polynomial
linearly complete (or at least when h approaches zero). The linearly completion can be simply
achieved by adding in polynomials with constant and linear terms [6], and the resultant models can
pass the standard patch tests (see part II). When the pure RBFs are used in constructing the RPIM
shape functions, the polynomial linearly completion is lost. However, such a linearly completion
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can be achieved at the limit of h approaching zero [5]. In this case, the model may not be able to
pass the standard patch tests, but will converge when refined [6], if the numerical model is stable.

For the convenience of discussion, we require the shape functions �n are positions of unity

Nn∑
n=1

�n(x)=1 (4)

which ensures correct representation of rigid-body movement, and the Kronecker delta property

�i (x j )=
{
1 when i= j

0 when i 
= j
(5)

which allows easy treatments for essential boundary conditions [5, 6]. Once the nodal shape
functions are obtained, an assumed (displacement component) function can be given as

uh(x)= ∑
n∈Ss

�n(x)dn (6)

where x={x1, x2}T, Ss is the set of the nodes in the support domain of the cell/element hosting
x, dn is the nodal value of the (displacement component) function.

2.3. Point interpolation

Given w∈ S where S is a linear space, the interpolant Ihw creates a function that lives in a
subspace Sh ⊂ S with Nn dimensions: Ihw∈ Sh , where

Ihw(x)=
Nn∑
n=1

w(xn)�n(x) (7)

With the Delta function property given in Equation (5), we have

Ihw(xn)=w(xn), n=1,2, . . . ,Nn (8)

All the FEM shape functions and the general PIM and RPIM shape functions can be used for
such an interpolation. Note the interpolant generated by the above point interpolation does not
necessarily live in a desired Hilbert (H1) space, and it lives in a G1 space (to be defined later).
Therefore, the point interpolation defined here is generally different from those defined in the FEM
settings where the interpolation is element based with proper mapping to ensure that the interpolant
lives in a desired H1 space [31]. An interpolant in an H space lives also in the corresponding G
space.

2.4. Gradient approximation: ‘smoothed’ strains
Different from the standard weak formulation, our W2 formulation also needs to approximate
the gradient of functions (strains), in addition to the usual approximation of field (displacement)
functions. Smoothing techniques for functions and the gradient of functions are a very useful
in numerical methods for function approximation [6]. Such a techniques were widely used in
many numerical operations/treatments, such as the nonlocal continuum mechanics [12, 13], the
SPH [4, 14, 16], hybrid FEM models [8], stabilizing nodal integrated mesh-free methods [18],
and restoring conformability and obtaining upper bound solution in mesh-free point interpolation
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methods [19, 26]. Using the smoothing technique and the generalized smoothing technique that
works also for discontinuous functions [22], we defined the ‘smoothed’ strain as (Figure 1)

�wl

�xi
(x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

As
x

∫
�s
x

�wl

�xi
d�= 1

Ax

∫
�s
x

wl(s)ni ds when wl(x) is continuous in �s
x

1

As
x

∫
�s
x

wl(s)ni ds when wl(x) is discontinuous in �s
x

(9)

In the first equation in (9), we used the Green’s Theorem and have both domain integration and
boundary line integration for the convenience in later derivation. Since the smoothing domain �s

x
used in the above equations changes (or moves) with x, it is termed as moving smoothing domain.
In this work we use stationary smoothing domains that are fixed for a point of interest. We do
not allow the smoothing domains to overlap: � =⋃Ns

k=1 �
s
k , where �s

k is a smoothing domain
bounded by �s

k for point at xk , as shown in Figure 2. In this case, Equation (9) becomes:

�wl

�xi
(x) = �wl

�xi
(xk)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

As
k

∫
�s
k

�wl

�xi
d�= 1

As
k

∫
�s
k

wl(s)ni ds︸ ︷︷ ︸
constant in �s

k

, wl(x) is continuous in �s
k

1

As
k

∫
�s
k

wl(s)ni ds︸ ︷︷ ︸
constant in �s

k

, wl(x) is discontinuous in �s
k

l=1,2, i=1,2 ∀x∈�s
k (10)

In carrying out the line integrations on the boundary �s
k in creating a W2 model, we simply

use the standard Gauss integration widely used in FEM [2]. The detailed procedure that leads to
Equation (9) and (10) can be found in [22]. Note that when the function is not continuous, the
compatible strain does not exist at locations in the problem domain. Therefore, the ‘smoothed’
strain is not exactly the strain obtained by smoothing the compatible strain field for such cases.
To be precise, the ‘smoothed’ strain field should be an approximated strain field.

3. G SPACES

We now introduce G spaces of functions of finite dimensions. For convenience in discussion, we
need to frequently refer to Hilbert or H spaces.

3.1. Brief on H spaces

The H1 for space used in this work is defined (for 2D cases) as (see, e.g. [32])

H1(�)={v|v∈L2(�), �v/�xi ∈L2(�), i=1,2} (11)
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Figure 1. Moving smoothing domains �s
x for the integral representation of a function at x, over which

the smooth function is defined. Note that the smoothing domain can be different for different x and they
can overlap. The smoothing functions can also be different for different x.

 

 

 

Figure 2. Division of problem domain � into non-overlapping stationary smoothing domains �s
k or xk

bounded by �s
k . The smoothing domain is also used as basis for integration.

and in particular H1
0(�)={v∈H1(�)|vi =0 on �D}. The H1 full norm is defined as

‖v‖2
H1(�)

=
∫

�
v2 d�︸ ︷︷ ︸

‖w‖2
L2(�)

+
∫

�
(∇v) ·(∇v)d�︸ ︷︷ ︸

|w|2
H1(�)

(12)

where

∇v=
(

�v

�x1

�v

�x2

)
(13)

The H1 semi-norm becomes

|v|2
H1(�)

=
∫

�
(∇v) ·(∇v)d� (14)

In this work, we denote a subspace in H1 space created using interpolation techniques that ensure
compatibility, which can then be defined as

H1
h(�)={v∈H1(�)|v(x)=uH(x)d,d∈RNn } (15)
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where uH(x) is the matrix of all the (compatible) nodal shape functions that are linearly independent
constructed using a proper FEM model, and can be written as

uH(x)=[�H
1 (x) �H

2 (x) . . . �H
Nn

(x)] (16)

Because H1
h is a linear space, each of the nodal shape functions �H

i (x) must also be in H1
h . The

linearly independence of shape functions �H
i (x), (i=1,2, . . . ,Nn) is ensured by a standard FEM

procedure (element based and proper mapping). In Equation (15) d is the vector of all the nodal
functions values given in the form of

d={v1 v2 . . . vNn }T (17)

Since the values at each node can change independently, we have d∈RNn , where RNn stands for
a real field of Nn dimensions.

Because H1
h is constructed in a discrete form with finite dimensions, it is marked with a subscript

‘h’. Functions in H1
h that satisfy the essential (displacement) boundary conditions form a space:

H1
h,0(�)={v∈H1

h(�)|v=0 on �u} (18)

An H1
h space is indeed very exclusive, and the methods that can be used to create functions

in an H1
h space are very much limited: the standard FEM technique and the properly performed

MLS approximation [6].

3.2. Definitions for G spaces

3.2.1. Smoothing domain creation. Consider a domain � discretized by, for example, triangulation
with Ne non-overlapping subdomains (called cells in mesh-free context or elements in FEM
settings) � =⋃Ne

i=1 �
e
i with a set of Nn nodes, and N�

c line segments �c
i (i=1, . . . ,N�

c ) which
divide the domain � into cells/elements. We next divide, in a basically independent way, the
domain � into Ns non-overlapping subdomains called smoothing domains: � =∪Ns

k=1 �
s
k with

N�
s line interfaces �s

i (i=1, . . . ,N�
s ) between the smoothing domains. The division of � into �s

k
is performed in such a way that the interfaces �s

k of �s
k do not share any finite portion of the

interfaces �c
i on which the function is not square integrable. The interfaces of �s

k can go across
�c
i . Only when the function is continuous on �c

i , the sharing of the interfaces of �s
k and �e

i may
be permitted. A typical division of domain is given in Figure 3 for 2D domains, where node-based
smoothing domains are created on a set of triangular background cells. Figure 4 shows an example
for 1D domains.

3.2.2. G1 space and norms. The G1
h that is relevant to this work can be then defined as follows:

G1
h(�)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

v|v(x) =
Nn∑
n=1

�n(x)dn =u(x)d

v∈L2(�), ∀d∈RNn

Ns∑
k=1

(∫
�s
k

v(s)ni ds

)2

>0, ∀v 
=0, i =1, . . . ,d

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(19)
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s
kΩ

k s
kΓ

Field nodes Centroid of triangle Mid-edge-point 

Figure 3. A typical division of domains for G space function. Triangular elements (bounded by solid
lines) and the non-overlapping stationary smoothing domain �s

k (bounded by dashed lines �s
k) for node n

created by connecting the centroids with the mid-edge-points of the surrounding triangles of a node. �s
k

does not share any finite portion of any internal edges of the triangular elements. The smoothing operation
is performed over the entire node-based smoothing cell.

where �n(x) is the nodal shape function for node n, and these Nn shape functions form the basis
of the G1

h space. It is observed that the G1
h space is of finite dimension (denoted by subscript ‘h’)

and with a set of functions that are square integrable in � formed by point interpolation using a
basis. These nodal shape functions are created using nodes selected based on elements/cells using
the standard FEM or mesh-free procedures, and hence they are continuous at all these nodes and
on these interfaces �s

k(k=1, . . . ,N�
s ). The continuity on all these interfaces �s

k allows a unique
evaluation of the generalized smoothed gradient of the functions over the smoothing domains �s

k ,
so that the variation of the functions over � can be captured in a local averaged fashion. We do not
restrict on how the basis is created, as long as these nodal shape functions are linearly independent
over � and hence are capable to form a basis. The norms for G1

h spaces are induced from inner
products defined as follows.

3.2.3. G1 norms for 1D scalar fields. The associated inner product is given by:

(w,v)G1
(�)

=
∫

�
wv d�+

Ns∑
k=1

�s
kw

′ ·w′ =
∫

�
wv d�︸ ︷︷ ︸
(w,v)

+
Ns∑
k=1

As
k ḡ(w)ḡ(v)︸ ︷︷ ︸
(w′,w′)

(20)

Note the summation is possible because the division of � into �s
k is performed in such a way that

the interfaces �s
k of �s

k do not share any finite portion of the interfaces �c
i on which the function is

not square integrable: no energy loss in the interface of the smoothing domains. In Equation (20)
the (approximated) smoothed gradient is denoted as

w′ = �w

�x
= 1

As
k

∫
�s
k

w(s)nx ds= 1

As
k
(wk+1/2−wk−1/2)︸ ︷︷ ︸
=ḡ, constant in �s

k

= ḡ(w) (21)
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(a)

(b)

(c)

Figure 4. Division of a 1D problem domain � into Ne elements with Ne nodes at xk , and the linear
finite element shape functions are used for creating function w. The domain is then divided into Ns =Nn
non-overlapping node-based smoothing domains �s

k for xk bounded by xk−1/2 and xk+1/2. The smoothing
domain is used as a base for integration. The interpolation of function w and integration using node-based
smoothing domains create a positivity relay for the semi-norm of w starting from the Dirichlet boundary,
resulting in the second inequality. (a) Function w is fixed at the left end by the given Dirichlet boundary
condition. The semi-norm contributed from �s

1 gives surely a positive value, as long as d2 
=0; (b) when
d2=0, �s

2 now gives surely a positive value, as long as d3 
=0; and (c) when d2=d3=·· ·=dNn−1=0,
both �s

Nn−1 and �s
Nn

give positive values, as long as dNn 
=0. If dNn =0, it becomes a case of fixed
boundary and �Nn will still be positive. The ‘positivity relay’ completes.

where ḡ(w) denotes the smoothed derivatives of w with respect to x , and the smoothing domains
�s
k ‘centered’ at xk (= xn , in this 1D case) is bounded by xk−1/2 and xk+1/2, as shown in Figure 4.

The G1(�) semi-norm is next defined as

|w|2G1(�) =
Ns∑
k=1

As
k |w′|2=

Ns∑
k=1

As
k ḡ

2(w)︸ ︷︷ ︸
(w′,w′)

(22)

and the G1 full norm becomes

‖w‖2
G1(�)

=
∫

�
w2 d�︸ ︷︷ ︸

(w,w)=‖w‖2
L2

+|w|2
G1(�)︸ ︷︷ ︸

(w′,w′)

=‖w‖2L2 +|w|2
G1(�)

(23)

which is induced from the inner product equation (20).
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3.2.4. G1 norms for 2D scalar fields. The associated inner product is given by

(w,v)G1(�) =
∫

�
wv d�+

Ns∑
k=1

As
k∇w ·∇v=

∫
�

wv d�︸ ︷︷ ︸
(w,v)

+
Ns∑
k=1

As
k(ḡ1(w)ḡ1(v)+ ḡ2(w)ḡ2(v))︸ ︷︷ ︸

(∇w,∇v)

(24)

where the (approximated) smoothed gradient is denoted as

∇w=
(

�w

�x1

�w

�x2

)
=

⎛
⎜⎜⎜⎜⎝

1

As
k

∫
�s
k

w(s)n1 ds︸ ︷︷ ︸
=ḡ1,constant in �s

k

1

As
k

∫
�s
k

w(s)n2 ds︸ ︷︷ ︸
=ḡ2,constant in �s

k

⎞
⎟⎟⎟⎟⎠=(ḡ1(w) ḡ2(w)) (25)

where ḡi (w) denotes the smoothed derivatives of w with respect to xi .
The G1(�) semi-norm is next defined as

|w|2
G1(�)

=
Ns∑
k=1

As
k |∇w|2=

Ns∑
k=1

As
k(ḡ

2
1(w)+ ḡ22(w))︸ ︷︷ ︸

(∇w,∇w)

(26)

and the G1 full norm becomes

‖w‖2
G1(�)

=
∫

�
w2 d�︸ ︷︷ ︸

(w,w)=‖w‖2
L2

+|w|2
G1(�)︸ ︷︷ ︸

(∇w,∇w)

=‖w‖2L2 +|w|2
G1(�)

(27)

which is induced from the inner product equation (24). The definitions for 3D scalar fields are
natural extension and hence are omitted here.

3.2.5. G1 norms for 2D vector fields. For vector fields, we need to use vectors of functions.
For example, when the function has two components, we should have w=(w1 w2), where w1,
w2∈G1

h are the two component functions. In this case, we have the smoothed gradient for the kth
smoothing domain in the following form:

∇w=

⎛
⎜⎜⎜⎜⎝

�w1

�x1

�w1

�x2

�w2

�x2

�w2

�x2

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

As
k

∫
�s
k

w1(s)n1 ds︸ ︷︷ ︸
=ḡ11, constant in �s

k

1

As
k

∫
�s
k

w1(s)n2 ds︸ ︷︷ ︸
=ḡ12, constant in �s

k

1

As
k

∫
�s
k

w2(s)n1 ds︸ ︷︷ ︸
=ḡ21,constant in �s

k

1

As
k

∫
�s
k

w2(s)n2 ds︸ ︷︷ ︸
=ḡ22, constant in �s

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎝ ḡ11(w1) ḡ12(w1)

ḡ21(w2) ḡ22(w2)

⎞
⎠ (28)
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where ḡij(w) denotes the smoothed derivatives of wi with respect to x j . We notice here that the
(smoothed) gradient is now a matrix, and hence there can be many equivalent ways to define the
associated inner product. In this work, we decide to have the definition associated with the type
of physical problems to be studied for convenience of proving necessary theories for that type of
the problems. Considering 2D solid mechanics problems, we define the associated inner product
in the form of

(w,v)G1(�) =
∫

�
(w1v1+w2v2)d�︸ ︷︷ ︸

(w,v)

+
Ns∑
k=1

As
k[ḡ11(w1)ḡ11(v1)+ḡ22(w2)ḡ22(v2)+(ḡ12(w1)+ḡ21(w2))(ḡ12(v1)+ḡ21(v2))]︸ ︷︷ ︸

(∇w,∇v)

(29)

The induced G1(�) semi-norm is first defined as

|w|2
G1(�)

=
Ns∑
k=1

As
k(ḡ

2
11(w1)+ ḡ222(w2)+(ḡ12(w1)+ ḡ21(w2))

2)︸ ︷︷ ︸
(∇w,∇w)

(30)

It is clear that in our definition of the inner product and hence the induced the semi-norm we have
intentionally related to the strain components, and hence the L2 norm of the vector of strains.

The associated G1 full norm can now be defined as

‖w‖2
G1(�)

=
∫

�
(w2

1+w2
2)︸ ︷︷ ︸

(w,w)=‖w‖2
L2

d�+|w|2
G1(�)︸ ︷︷ ︸

(∇w,∇w)

=‖w‖2L2 +|w|2
G1(�)

(31)

3.2.6. G1 norms for 3D vector fields. For vector fields with three-component functions in three-
dimensions (3D), such as the 3D solid mechanics problems, we shall have w=(w1 w2 w3), where
w∈(G1

h)
3. In this case we define, naturally, the associated inner product as

(w,v)G1(�) =
∫

�
(w1v1+w2v2+w3v3)d�

+
Ns∑
k=1

As
k

⎡
⎢⎢⎢⎢⎢⎣

ḡ11(w1)ḡ11(v1)+ ḡ22(w2)ḡ22(v2)+ ḡ33(w3)ḡ3(v3)

+(ḡ12(w1)+ ḡ21(w2))(ḡ12(v1)+ ḡ21(v2))

+(ḡ13(w1)+ ḡ31(w3))(ḡ13(v1)+ ḡ31(v3))

+(ḡ23(w2)+ ḡ32(w3))(ḡ23(v2)+ ḡ32(v3))

⎤
⎥⎥⎥⎥⎥⎦ (32)
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The associated G1(�) semi-norm is defined as

|w|2
G1(�)

=
Ns∑
k=1

As
k

⎛
⎜⎜⎜⎜⎜⎝
ḡ211(w1)+ ḡ222(w2)+ ḡ233(w3)

+(ḡ12(w1)+ ḡ21(w2))
2

+(ḡ13(w1)+ ḡ31(w3))
2

+(ḡ23(w2)+ ḡ32(w3))
2

⎞
⎟⎟⎟⎟⎟⎠ (33)

and the G1 full norm becomes

‖w‖2
G1(�)

=
∫

�
(w2

1+w2
2+w2

3)d�+|w|2
G1(�)

(34)

We finally define a space for functions that are fixed on the Dirichlet boundaries and hence the
functions cannot ‘float’

G1
h,0={v∈G1

h(�)|vi =0 on �u} (35)

The G spaces defined in this section are ‘unusual’ in two ways: first, we do not use derivatives
of functions because we want to accommodate discontinuous functions that can be generated much
easily in both the mesh-free or finite element settings and second, the Frobenius or trace norms
are not used as induced matrix norms, and we intentionally define the inner product in such as
way that the inner product induced norms are related to the L2 norms of the vector of strains,
which facilitate a smoother process in the later part of the derivation of some key inequalities. Let
us now examine the G1

h space in comparison with the H1
h space.

3.3. The difference between G1
h and H1

h spaces

The major differences between a G1
h space and the corresponding Hilbert space or H1

h space are
as follows:

(1) The H1
h space requires the function and the first derivatives of the function all square

integrable, but in the G1
h space we require only the function itself square integrable.

(2) The requirement on function is now further weakened upon the already weakened require-
ment for functions in an H1

h space, and hence G1
h spaces can be viewed as spaces of

functions with weakened weak (W2) continuity.
(3) The first derivatives of functions in an H1

h space need to be bounded from above:∫
�(�v/�xi )2 d�<∞. This is because the energy in the weak formulation needs to be
bounded. We do not worry about the possibility of

∫
�(�v/�xi )2 d�=0, because it will

never happen as long as the function is not zero everywhere (the well-known Poincare–
Friedrichs inequality). On the other hand, for functions in a G1

h space, however, we need

the ‘positivity’ to bound the functions form below:
∑Ns

k=1

(∫
�s
k
v(s)ni ds

)2
>0. This is

because we need to ensure the stability of our W2 formulations. The energy in the W2

formulation is automatically bounded from above, because the function itself is square
integrable, and we use only the function values to evaluate the energy.

(4) Because a member in an H1
h space is a member in the corresponding G1

h space (using the
same mesh with proper smoothing domains), we shall have H1

h ⊂G1
h . In addition, because

Copyright � 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 81:1093–1126
DOI: 10.1002/nme



1106 G. R. LIU

a function in a G1
h space is also a member of the L2 space; therefore, a G1

h space is a
subspace of L2 space. We shall then have

H1
h(�)⊂G1

h(�)⊂L2(�) (36)

3.4. Basic properties

Because the G1 spaces are defined in the above-mentioned ‘unusual’ manner, we have to show
that they possess all the necessary basic properties.

First, a G1
h space is a normed linear space because it is clear that ∀w1, w2∈G1

h , we have
(w1+w2)∈G1

h ; and for ∀w∈G1
h and ∀�∈R, we also have �w∈G1

h .
Second, from the definition, we observe the positivity

‖w‖G1>0 ∀w∈G1
h, w 
=0 (37)

and the scalability

‖�w‖G1 =|�|‖w‖G1 ∀�∈R ∀w∈G1
h (38)

Third, we have the triangular inequality

‖w+v‖G1�‖w‖G1 +‖v‖G1 ∀w∈G1
h ∀v∈G1

h (39)

which can be proven as follows. We first proof this for 2D scalar functions:

‖w+v‖G1 =
[∫

�
(w+v)2 d�+

Ns∑
k=1

As
k |∇(w+v)|2

]1/2

=
[∫

�
w2 d�+

∫
�

v2 d�+2
∫

�
wv d�

+
Ns∑
k=1

As
k((ḡ1(w)+ ḡ1(v))2+(ḡ2(w)+ḡ2(v))2)

]1/2

=

⎡
⎢⎢⎢⎢⎣

∫
�

w2 d�+
∫

�
v2 d�+2

∫
�

wv d�

+
Ns∑
k=1

As
k(ḡ

2
1(w)+2ḡ1(w)ḡ1(v)+ ḡ21(v)+ ḡ22(w)+2ḡ2(w)ḡ2(v)+ ḡ22(v))

⎤
⎥⎥⎥⎥⎦
1/2

(40)
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
�

w2 d�+
Ns∑
k=1

As
k(ḡ

2
1(w)+ ḡ22(w))︸ ︷︷ ︸

‖w‖2
G1

+
∫

�
v2 d�+

Ns∑
k=1

As
k(ḡ

2
1(v)+ ḡ22(v))︸ ︷︷ ︸

‖v‖2
G1

+2

⎛
⎜⎜⎜⎜⎝
∫

�
wv d�+

Ns∑
k=1

As
k(ḡ1(w)ḡ1(v)+ ḡ2(w)ḡ2(v))︸ ︷︷ ︸

(w,v)G1�‖w‖G1‖v‖G1

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/2

� [‖w‖2G1+2‖w‖G1‖v‖G1+‖v‖2G1]1/2=‖w‖G1+‖v‖G1 ∀w∈G1
h ∀v∈G1

h (41)

In the above proof process, we used the well-known Cauchy–Schwarz inequality for our inner
product induced norms.

The exact same procedure can be applied to prove the triangular inequality for vector functions,
but it will be a little lengthy. We prove it here for the 2D case, by examining first the semi-norm
of the sum of two functions w, v∈G1

h based on the definition equation (30):

|w+v|2
G1(�)

=
Ns∑
k=1

As
k(ḡ

2
11(w1+v1)+ ḡ222(w2+v2)+(ḡ12(w1+v1)+ ḡ21(w2+v2))

2)

=
Ns∑
k=1

As
k

(
ḡ211(w1)+ ḡ211(v1)+2ḡ11(w1)ḡ11(v1)+ ḡ222(w2)+ ḡ222(v2)

+2ḡ22(w2)ḡ22(v2)+((ḡ12(w1)+ ḡ21(w2))+(ḡ12(v1)+ ḡ21(v2)))
2

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ns∑
k=1

As
k(ḡ

2
11(w1)+ ḡ222(w2)+(ḡ12(w1)+ ḡ21(w2))

2)︸ ︷︷ ︸
|w|2

G1(�)

+
Ns∑
k=1

As
k(ḡ

2
11(v1)+ ḡ222(v2)+(ḡ12(v1)+ ḡ21(v2))

2)︸ ︷︷ ︸
|v|2

G1(�)

+2
Ns∑
k=1

As
k

(
ḡ11(w1)ḡ11(v1)+ ḡ22(w2)ḡ22(v2)

+(ḡ12(w1)+ ḡ21(w2))(ḡ12(v1)+ ḡ21(v2))

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(42)

We then examining the full norm of the sum of two functions w, v∈G1
h based on the definition

equation (31):

‖w+v‖2
G1(�)

=
∫

�
((w+

1 v1)
2+(w2+v2)

2)d�+|w+v|2
G1(�)

=
∫

�
(w2

1+v21+w2
2+v22+2w1v1+2w2v2)d�+|w+v|2

G1(�)

=
∫

�
(w2

1+v21)d�+
∫

�
(w2

2+v22)d�+2
∫

�
(w1v1+w2v2)d�+|w+v|2

G1(�)
(43)
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Substituting Equation (42) into (43), gives

‖w+v‖2
G1 =

∫
�

(w2
1+v21)d�+

∫
�

(w2
2+v22)d�+2

∫
�

(w1v1+w2v2)d�

+|w|2
G1 +|v|2

G1 +2
Ns∑
k=1

As
k

(+ḡ11(w1)ḡ11(v1)+ ḡ22(w2)ḡ22(v2)

+(ḡ12(w1)+ ḡ21(w2))(ḡ12(v1)+ ḡ21(v2))

)

= ‖w‖2
G1 +‖v‖2

G1 +2

⎛
⎜⎜⎜⎝
∫

�
(w1v1+w2v2)d�

+
Ns∑
k=1

As
k

(
ḡ11(w1)ḡ11(v1)+ ḡ22(w2)ḡ22(v2)

+(ḡ12(w1)+ ḡ21(w2))(ḡ12(v1)+ ḡ21(v2))

)
⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
(w,v)�‖w‖

G1(�)
‖v‖

G1(�)

� ‖w‖2
G1 +‖v‖2

G1 +2‖w‖G1‖v‖G1 =(‖w‖G1 +‖v‖G1)
2 (44)

which is Equation (39). Note here that we used again the Cauchy–Schwarz inequality.
Finally, comparing Equations (23) with (22), we obtain

|w|G1(�)�‖w‖G1(�) ∀w∈G1
h (45)

meaning that the G1 full norm is always larger than the G1 semi-norm.

3.5. Convergence property for functions in H1 space

Remark 3.1
Convergence property: For w, v∈H1, when Ns →∞ and all �s

k →0, W̄ becomes Delta functions
and the integral representation becomes exact. At such a limit, we have ∇w→∇w, (w,v)G1(�) →
(w,v)H1(�), ‖w‖G1(�) →‖w‖H1(�), |w|G1(�) →|w|H1(�), ‖w‖G2(�) →‖w‖H2(�), and |w|G2(�) →|w|H2(�).

Remark 3.1 ensures that all the bound properties for G1
h norms convergence to the corresponding

H1
h norms defined in the same manner at the limit of Ns →∞ and all �s

k →0 for all functions in
the H space. In this work, however, we need the inequalities for finite smoothing domains and for
all functions in G1

h spaces, which are termed as G inequalities to be derived in the next sections.

3.6. First inequality for functions in H1 space

The first inequality relates the (full) G1 norm of a function to L2 norm of the nodal values of
the function when the function is approximated based on an approximation method using local
nodes scattered in the problem domain. For easy analysis and comprehension, we first consider a
one-dimensional (1D) problem defined in � discretized using the linear finite elements, as shown
in Figure 4. We will prove that a G1 space can be created using node-based smoothing domains.
Over the 1D domain, we use Ne elements with Nn(=Ne+1) nodes. The standard linear finite
element procedure is employed to formulate a set of linear shape (basis) functions that are then
used to create a set of functions in an H1 space. In this case, the set of shape functions will be
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clearly linearly independent, form a basis, and a function created using this set of nodal shape
functions and the nodal values of the function are in an H1 space, and can be expressed as

w(x)= ∑
n∈Se

�ndn (46)

where dn is the nodal function value at node n and �n is the linear shape function for node n,
shown as straight lines in Figure 4.

Using Equation (23), the full G1 norm of a function for 1D problems is given by

‖w‖G1(�) =

⎡
⎢⎢⎢⎢⎣
∫

�
w2 d�︸ ︷︷ ︸

>0,∀w 
=0

+
Ns∑
k=1

As
k(ḡ

2(w))︸ ︷︷ ︸
�0, for anyw and �s

k

⎤
⎥⎥⎥⎥⎦
1/2

(47)

where the second term in the right-hand side (RHS) of the above equation will always be no-less
than zero for any w regardless how the smoothing domains are created. The first term is always
larger than zero, as long as w is not zero.

Since the set of FEM shape functions is linearly independent and hence can form the basis
for the G1 space. By the definition of Equation (3), a w(x) created using Equation (46) (hence
‖w‖G1(�)) will never be zero everywhere in � unless all the nodal values dn in � (hence ‖d‖L2(�))
are zero. This means that any nonzero ‖d‖L2(�) will surely produce a nonzero positive ‖w‖G1(�).

On the other hand, if ‖w‖G1(�) is zero for a w∈ S̃⊂H1, from the norm definition equation (47),
we immediately see that w must be zero everywhere in �, otherwise an nonzero positive value will
be generated by the first term on LHS of Equation (47). Hence all the nodal displacements dn in
� (hence ‖d‖L2(�)) must be zero, if ‖w‖G1(�) is zero. If ‖w‖G1(�) is nonzero for a w∈ S̃, w must
be nonzero somewhere in �, and there will be at least a nonzero dn (hence nonzero ‖d‖L2(�)).

Otherwise, if ‖w‖G1(�) is nonzero for a w∈ S̃ that is zero everywhere in �,
∑Ns

k=1 A
s
k(w̄

2
1) in

Equation (47) must be nonzero. This can only happen when w̄1 (see Equation (21)) is nonzero for
some smoothing domains, this is however contradicting to the fact that w is zero everywhere in �.
Therefore, any nonzero ‖w‖G1(�) will surely require a nonzero ‖d‖L2(�). In summary, there must

exist a nonzero positive constant c f
dw, such that

‖d‖L2(�)�c f
dw‖w‖G1(�) ∀w∈ S̃ (48)

or equivalently there must exist a nonzero positive constant c f
wd, such that

‖w‖G1(�)�c f
wd‖d‖L2(�) ∀w∈ S̃ (49)

Equations (48) or (49) is called, in this work, the first inequality for functions in a Hilbert space,
which states that these norms ‖w‖G1(�) and ‖d‖L2(�) are equivalent, as long as w is created using
linearly independent FEM shape functions and nodal values dn in the form of Equation (46).

3.7. First inequality for functions in G1 space

In the above analysis, it is clear that we always have the inequality in Equation (48), as long as
these nodal shape functions are linearly independent, because this is only the condition that we
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used in the above derivation. Therefore, mesh-free shape functions such as the ones created using
the point interpolation procedure (PIM and RPIM) [5, 6] can also be used, and a function can
be created in the form of Equation (6). In such a situation, the nodes used in the shape function
creation are not confined within the cell/element, and is in fact usually beyond the cell/element.
Therefore, the w generated is generally not continuous and hence not belongs to an H1

h space,
but a G1

h space. In Reference [6], typical examples of discontinuous functions generated using
the PIM and RPIM shape functions are plotted and analyzed in detail in Figure 5.47 for 1D
cases, and Figures 8.1 and 8.2 for 2D cases. In our analysis here, however, the discontinuity is
irrelevant, because for the inequality in Equations (48) or (49) to hold, all we need is the linearly
independence of these shape functions. We thus immediately have

‖d‖L2(�)�c f
dw‖w‖G1(�) ∀w∈G1

h (50)

or equivalently

‖w‖G1(�)�c f
wd‖d‖L2(�) ∀w∈G1

h (51)

which is called the first inequality for functions in a G space. We now record the following remark.

Remark 3.2
Functions in a G1

h space satisfy the first inequality equations (50) or (51): the full G norm of a
function in a G1

h space is equivalent to the L2 norm of the nodal values of the function.

3.8. Extension to higher dimensions and vector functions

It is clear that all these augments used in the above discussion also applicable to scalar fields of
any higher dimensions, because one node still carries one nodal unknown, and the field function
is created using these nodal values and shape functions. Therefore, we conclude that Remark 3.2
is valid for 2D and 3D cases. For vector functions, the same arguments also hold, but we need
linearly independent shape functions, respectively, for each of the component functions w1, w2
and maybe w3.

3.9. Second inequality

The second inequality relates the G1 semi-norm of a function to the L2 norm of the nodal values
of the function in a G1 with a set of smoothing domains created for evaluating the G1 semi-
norm. Again, for easy analysis and comprehension, we first consider a 1D problem defined in
� discretized using the finite elements. We now further construct a set of node-based smoothing
domains: one smoothing domain for each of these nodes is created with two boundary points
located at the centers of the two neighboring elements, as shown in Figure 4.

3.9.1. Positivity relay. Using Equation (22), the G1 semi-norm for 1D problems can be written as

|w|G1(�) =
[

Ns∑
k=1

As
k ḡ

2(w)

]1/2
=
[

Ns∑
k=1

1

As
k
(w(xk+1/2)n(xk+1/2)+w(xk−1/2)n(xk−1/2))

2

]1/2
(52)
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where w∈ S̃0⊂H1
0, xk+1/2 and xk−1/2 denote the x coordinates at, respectively, the right

and left boundary points of the kth smoothing domain (at the middles of the two neigh-
boring elements). For any nonzero function w∈ S̃ with at least one dn 
=0, the semi-norm is
evaluated as

|w|G1(�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

As
1
(w(x1+1/2)×1+w(x1)×(−1))2

+ 1

As
2
(w(x2+1/2)×1+w(x1+1/2)×(−1))2+·· ·

+ 1

As
k
(w(xk+1/2)×1+w(xk−1/2)×(−1))2+·· ·

+ 1

As
Nn

(w(xNn )×1+w(xNn−1/2)×(−1))2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/2

(53)

Using Equation (46), we obtain

|w|G1(�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

As
1

⎛
⎜⎝�1+1/2

1︸ ︷︷ ︸

=0

d1︸︷︷︸
=0,BC

+�2−1/2
2︸ ︷︷ ︸

=0

d2− �1
1︸︷︷︸

=1

d1︸︷︷︸
=0,BC

⎞
⎟⎠

2

+ 1

As
2

⎛
⎜⎝�2+1/2

2 d2+�3−1/2
3 d3−�1+1/2

1 d1︸︷︷︸
=0,BC

−�2−1/2
2 d2

⎞
⎟⎠

2

+·· ·

+ 1

As
k
(�k+1/2

k ds+�k+1/2
k+1 ds+1−�k−1/2

k−1 dk−1−�k−1/2
k dk)

2+·· ·

+ 1

As
Nn

(�Nn
Nn
dNn −�Nn−1/2

Nn−1 dNn−1−�Nn−1/2
Nn

dNn )
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/2

(54)

where � j
i =�i (x j ). Invoking the Dirichlet boundary condition at x1, if d2 
=0, we have

|w|G1(�)�cwd2d
2
2 ∀w∈ S̃ and d2 
=0 (55)

where cwd2=1/(2A1)>0. If d2=0 but d3 
=0, we then have

|w|G1(�)� cwd3︸︷︷︸
=1/(2As

2)>0

d23 ∀w∈ S̃ with d2=0 and d3 
=0 (56)

We see clearly a ‘positivity relay’ initiated by the Dirichlet boundary condition at the left most
point of the 1D domain, as shown in Figure 4. When this positivity relay continues, and we shall
have at the end

|w|G1(�)� cwdNn︸ ︷︷ ︸
=1/(2As

Nn−1)>0

d2Nn
∀w∈ S̃ with d2=d3=·· ·=dNn−1=0 and dNn 
=0 (57)
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Let

cmin
wd =min(cwd2,cwd3, . . . ,cwdNn ) (58)

We then obtain

|w|G1(�)�
cmin
wd

Nn−1︸ ︷︷ ︸
cswd

( d21︸︷︷︸
=0

+d22 +d23 +·· ·+d2Nn
)�cwd‖d‖L2(�) ∀w∈ S̃ (59)

Which means that we can always find a nonzero positive cswd, such that

|w|G1(�)�cswd‖d‖L2(�) ∀w∈ S̃ (60)

or equivalently, there always exist a nonzero positive csdw, such that

|w|G1(�)�csdw‖d‖L2(�) ∀w∈ S̃ (61)

This equivalence is clearly a result from the above process of positivity relay. This equivalence
of the semi-norm |w|G1(�) and the norm ‖d‖L2(�) is clearly a result from the above process of
positivity relay. Such a positivity relay always occurs because the particular way of partitioning
the problem domain into smoothing domains and the way that the semi-norm is defined: it sums
up the squared differences of the value of w at two boundary points of the smoothing domain that
contains a node. When the value of w at any one of the boundary points (it does not have to be on
the left most boundary of the problem domain) vanishes, it will trigger a positivity relay leading
to the second inequality in Equations (60) or (61).

3.9.2. Independence of rows in the smoothed gradient matrix. The equivalence of the semi-
norm |w|G1(�) and the L2 norm ‖d‖L2(�) can also be derived from another point of view. From

Equation (54), we see that for the G1 semi-norm of w to vanish, all the following equations have
to be satisfied for the smoothing domains:

For �s
1 : 1

As
1
�1+1/2
2 d2 = 0

For �s
2 : 1

As
2
(�2+1/2

2 d2+�3−1/2
3 d3) = 0

...

For �s
k : 1

As
k
(�k+1/2

k dk+�(k+1)−1/2
k+1 dk+1) = 0

...

For �s
Nn

: 1

As
Nn

�Nn
Nn
dNn = 0

(62)
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or in matrix form

�s
1→

�s
2→

...

�s
k →

...

�s
Nn

→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1+1/2
2

As
2

0 0 0 0 0

�2+1/2
2

As
2

�2+1/2
3

As
2

0 . . . . . . 0

...
...

. . .
...

...
...

...
...

�k+1/2
k

As
k

�k+1/2
k+1

As
k

...
...

...
...

...
...

. . .
...

0 0 . . . . . . 0
�Nn
Nn

ANn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2

d3

...

dk

...

dNn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸

d

=BNn×(Nn−1)d=0 (63)

where B is the smoothed gradient matrix for node-based smoothing domains. It is a tall–slim
matrix for this set of node-based smoothing domains, and the equation system given Equation (63)
is an ‘over-determined’ system. Simple observation (perform simple Gauss elimination) reveals
that the first (Nn−1) rows in B are clearly linearly independent. In fact, because each row in B
represents an interpolation at a point in a particular element using the shape functions that are
linearly independent, there must be (Nn−1) rows in B being linearly independent, and hence any
choice of (Nn−1) rows from B will be linearly independent. Therefore, the only possibility for
Equation (63) to be satisfied is d=0. In other words, any nonzero d will surely produce a nonzero
positive |w|G1(�). On the other hand, if |w|G1(�) is nonzero, there must be at least one equation in
Equation (62) is nonzero, hence there is at least one nonzero entry in the RHS of Equation (63).
Choosing (Nn−1) rows from Equation (63) with at least one row corresponding to the nonzero
entry in the RHS of Equation (63), we can then form the following equation:

Brd= b︸︷︷︸

=0

(64)

Because the rows in the reduced matrix Br are clearly linearly independent, thus Br is invertible,
and Equation (64) can be solved for a nonzero d resulting in a nonzero ‖d‖L2(�). Therefore, the
semi-norms |w|G1(�) and norm ‖d‖L2(�) are equivalent, and hence Equations (60) and (61) hold.

3.9.3. Types of smoothing domains. Next, we examine other types of smoothing domains. Because
the first inequality holds for any types of smoothing domain, we only need to examine the second
inequality for different types of smoothing domains.

For 1D problems with linear FEM shape functions, the simplest alternative to the already
discussed node-based smoothing domains is the cell-based smoothing domains: we simply use an
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element as a smoothing domain. In this case, Equation (63) becomes⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�2
2

A1
0 0 0 0 0

0
�3
3

A2
0 . . . . . . 0

...
...

. . .
...

...
...

...
...

...
�k+1
k+1

As
k

...
...

...
...

...
...

. . .
...

0 0 . . . . . . 0
�Nn
Nn

As
Nn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d2

d3

...

dNn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸

d

=B(Nn−1)×(Nn−1)d=0 (65)

where the smoothed gradient matrix B that is a diagonal matrix, obviously invertible, and hence the
semi-norms |w|G1(�) and norm ‖d‖L2(�) must be equivalent. Therefore, Equations (60) and (61)
hold. This is no surprise, because when we use cell (element)-based smoothing domain and linear
shape functions, the model becomes exactly the FEM model [19, 26]. Essentially what is happening
here is that the linearly independent set of shape functions provides a basis for creating a set
of (Nn−1) independent function values, and the element-based smoothing domains ‘isolate’ and
‘lock-in’ these values, and the semi-norm squares these values individually ensuring the positivity
in the semi-norm.

When higher order of elements (hence higher-order shape functions) is used, the use of one
whole element as one smoothing domain will not work. Because in such a case, the smoothed
gradient matrix B becomes a short-fat matrix (not enough ‘isolations’), and the equations system
given in Equation (63) becomes ‘under determined’, although these shape functions are still linearly
independent. Hence, there will be a plenty of nonzero d that satisfies Equation (63) to produce
zero semi-norm, and hence we cannot proof the equivalency of the semi-norms |w|G1(�) and
norm ‖d‖L2(�). Therefore, when higher order of elements is used, we have to use more smoothing
domains than the number of the elements. The use of node-based smoothing domains will surely
work (with enough ‘isolations’) as discussed earlier. We can also use two or more smoothing
domains in each element (to create more ‘isolations’), as in the SFEM [9–11]. The question is now
how should we form the smoothing domains and how many smoothing domains we have to use.

3.9.4. Linearly independent smoothing domains. Linearly independent smoothing domain is
defined as a smoothing domain whose row in Equation (63) is linearly independent of the rest of
the rows in the smoothed gradient matrix B for other smoothing domains. For 1D problems with
linear FEM shape functions, both the node-based and cell-based smoothing domains are linearly
independent.

The use of more smoothing domains will leads to a tall–slim B matrix as seen in Equation (63),
but it does not necessarily guarantee a sufficient number of independent rows in B. This is because
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the division of the smoothing domains will affect the independency of the rows in the B matrix. For
example, in the node-based smoothing domain case, one may further divide some of the node-based
smoothing domains into more and smaller smoothing domains. This will produce more equations
in Equation (63), but some of them will be linearly dependent. Therefore, the division of smoothing
domains should be performed in relation to the node distribution or the background cells. For
example, we should not have any smoothing domain that includes two nodes or more. Typical
proven divisions that give sufficient number of independent smoothing domains are cell/element
based as in the smoothed FEM or SFEM [7, 10] and CS-PIM [21], node based as in the NS-PIM
[19, 26] and NS-FEM [27], as well as the edge/face based as in the ES-FEM [28, 29].

3.9.5. A discussion on soft and stiff modes: upper and lower bounds. When the number of linearly
independent smoothing domains satisfies the minimum number given in [22], the use of more
(hence finer division) smoothing domains will not change the fact of positivity, but will affect the
degree of the positivity, and it generally leads to a ‘stiffer’ model. When the number of smoothing
domains becomes infinite and the size of all the smoothing domains becomes infinitely small, we
arrived at an FEM model (see Remark 3.1 and [10, 11]). Because a fully compatible FEM model
is known overly stiff, and the solution will be lower bound to the exact solution in energy norm
(see,), and hence we do not have any reason to make an even stiffer model.

We do, however, have many good reasons to make softer models, and one of which reasons is
to obtain an upper bound solution. To produce a softer model, Liu discovered that we can simply
create a model that uses a smaller number (but larger than the minimum number) of smoothing
domains, as it is done in the NS-PIM [19, 26] and in NS-RPIM [33]. Theoretically, one can make
a model as softer as desired and can even make a model that is singular! This implies that it
is always possible to make a model soft enough to produce upper bound solution known as the
existence theory. However, when the model gets too soft, there can be nonzero energy modes that
can lead to temporal instability and the model cannot be used for dynamics problems, because a
certain amount of kinetic energy can excite these modes and produce erroneous solutions. When
we want to remove spurious modes and to have temporal stability, we should use more smoothing
domains, as we do in the ES-FEM [28] and SFEM [10, 11]. The ES-FEM model was found to
possess very ‘close-to-exact’ stiffness [28].

3.9.6. A discussion on hourglass modes. It is well known that there can be spatially instable
modes called hourglass modes when we use reduced integration in quadrilateral elements in FEM.
The hourglass modes are zero-energy nodes and hence are spatially instable (any mount of inputs
can create instability in the numerical solution), and hence is different from the nonzero energy
spurious modes (mentioned in Section 3.9.5) that are temporally instable (you need a certain mount
of kinetic energy to excite these modes). There have been many discussions on the hourglass modes
in the open literature. It is known that an hourglass model appears when one Gauss sampling
point per quadrilateral element is used, which is quite similar (in term of stability behavior) to our
case of using cell-based smoothing domain with one smoothing domain for each of the elements.
When one smoothing domain per element is used, the equation system can be singular, because
the minimum integration points of 2nt/3 may not be satisfied, and hence the positivity of the
semi-norm can be lost [22]. For example, when one quadrilateral element is used for the entire
problem domain with two nodes fixed, we shall have 8−4=4 total unknowns and need a minimum
of 4

3 smoothing domains. If only one smoothing domain for this element is used, the equation
system will be singular. To prevent this kind of situations from happening, we need to use more
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smoothing domains in at least some of the elements in a model. A detailed discussion on this
scenario can be found in [10] where cell-based smoothing models are established and examined in
the FEM framework. When the node-based smoothing domains are used, however, such hourglass
modes will not appear, because the number of smoothing domains becomes now nt that is always
larger the minimum integration points of 2nt/3. A detailed discussion on this analysis can be
found in [27] where node-based smoothing models are established and examined in the FEM
framework.

From the above analysis, we conclude that for any finite model as long as a minimum number
of linearly independent smoothing domains are used, functions created using any set of linearly
independent nodal shape functions will satisfy the inequalities equations (60) and (61). Therefore,
mesh-free shape functions such as the ones created using the point interpolation procedure (PIM
and RPIM) [5] can also be used, because the discontinuity is irrelevant. We now present the
following remark.

Remark 3.3
If at least a minimum number of linearly independent smoothing domains are used, we should
have the second inequality

|w|G1(�)�cswd‖d‖L2(�) ∀w∈G1
h,0(�) (66)

or equivalently

‖d‖L2(�)�csdw|w|G1(�) ∀w∈G1
h,0(�) (67)

meaning that the full G1 semi-norm of a function in a G space is equivalent to the L2 norm of the
nodal values of the function.

Based on the same argument presented in Section 3.8, we conclude that the second inequality
also holds for 2D and 3D cases. All we need is to use the smoothing domains with minimum
number of linearly independent smoothing domains and a set of shape functions that are linearly
independent. In other words, a set of linearly independent nodal shape functions (created using
FEM and/or mesh-free settings) can form functions in a normed G1 space, as long as a set of
minimum number of linearly independent smoothing domains are used to evaluate the semi-norms.
In actual practice, we have successfully used node-based, edge-based, and cell-based smoothing
domains, in both FEM and mesh-free settings, as discussed in [22].

3.10. Third inequality

We now ready to present the third inequality stated in the following theorem.

Theorem 3.1
Equivalence of G norms: When atleast a minimum number of independent node-based smoothing
domains are used to evaluate the G1 norms, there exists a positive nonzero constant cG such that

cG‖w‖G1(�)�|w|G1(�) ∀w∈G1
h,0 (68)

meaning that the G1 full norm and the G1 semi-norm of any function in a G1
h,0 space are equivalent.
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Proof

The combination of the inequality equation (50), and the inequality equation (66) gives

|w|G1(�)�cswd‖d‖L2(�)�cswdc
f
dw︸ ︷︷ ︸

cG

‖w‖G1(�)�cG‖w‖G1(�) ∀w∈G1
h,0(�) (69)

which is the third inequality. �

Combining Equations (45) and (69), we arrived at the following chain inequalities:

cG‖w‖G1(�)�|w|G1(�)�‖w‖G1(�) ∀w∈G1
h,0 (70)

The third inequality equation (68) is a generalized version of the well-known Poincare–Friedrichs
inequality. It is the foundation of the W2 formulation, ensuring the stability of the solution.
Equation (70) is essential to ensure both the uniqueness and convergence of a W2 formulation of a
physically stable problem. For solid mechanic problems, for example, we need the material being
stable (see, part II for definition).

3.11. Softening effects

We further examine some of the important properties of functions in G spaces.

Remark 3.4
For a function in an H1 space, the G1 semi-norm of the function is no larger than the H1 semi-norm
(of same type) of the function

|w|G1(�)�|w|H1(�) ∀w∈H1 (71)

meaning that the smoothing operation results in a smaller semi-norm measure. This is the funda-
mental inequality of the so-called softening effects [26].
Proof
From Equation (14), the H1 semi-norm is defined by

|w|2
H1(�)

=
∫

�
(∇w) ·(∇w)d�=

Ns∑
k=1

∫
�s
k

(
�w

�x1

�w

�x1
+ �w

�x2

�w

�x2

)
d� (72)

The summation is possible because w is in an H space. For such a w, the G1 semi-norm can be
written as follows using Equations (22) and (21):

|w|2
G1(�)

=
Ns∑
k=1

As
k |∇w|2=

Ns∑
k=1

As
k

(
�w

�x1

�w
�x1

+ �w

�x2

�w

�x2

)
(73)

To prove Equation (71), we need only to prove

As
k
�w

�xi

�w

�xi
�
∫

�s
k

�w

�xi

�w

�xi
d� ∀w∈H1 (74)
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where i=1 or 2. Because w is in an H space, the first equation in Equation (10) is applicable, and
hence Equation (74) becomes(∫

�s
k

1

As
k

�w

�xi

)
d�

(∫
�s
k

1

As
k

�w

�xi
d�

)
� 1

As
k

∫
�s
k

�w
�xi

�w
�xi

d� ∀w∈H1 (75)

or (∫
�s
k

1

As
k

�w

�xi
d�

)2

� 1

As
k

∫
�s
k

(
�w

�xi

)2

d� ∀w∈H1 (76)

Dividing �s
k into nq subdomains of equal areas �s

k =∪nq
q=1�

s
k,q , we then have

1

As
k

∫
�s
k

(
�w

�xi

)2

d�= lim
nq→∞
�k,q→0

⎛
⎝ 1

As
k

nq∑
q=1

As
k,q

(
�w

�xi

∣∣∣∣
q

)2
⎞
⎠ (77)

Using the inequality of arithmetic and geometric means (AM-GM inequality), which states that
the AM of a list of non-negative real numbers is greater than or equal to the GM of the same list,
we arrive at

1

As
k

∫
�s

(
�w

�xi

)2

d� = lim
nq→∞
�s
k,q→0

⎛
⎜⎜⎜⎜⎜⎝

nq∑
q=1

As
k,q

As
k︸ ︷︷ ︸
1
nq

(
�w
�xi

∣∣∣∣
q

)2

︸ ︷︷ ︸
�0

⎞
⎟⎟⎟⎟⎟⎠� lim

nq→∞
�s
k,q→0

⎛
⎜⎜⎜⎜⎜⎝

nq∑
q=1

As
k,q

As
k︸ ︷︷ ︸
1
nq

�w
�xi

∣∣∣∣
q

⎞
⎟⎟⎟⎟⎟⎠

2

= lim
nq→∞
�s
k,q→0

⎛
⎝ 1

(As
k)

2

(
nq∑
q=1

As
k,q

�w

�xi

∣∣∣∣
q

)2
⎞
⎠=

(
1

As
k

∫
�s
k

�w

�xi
d�

)2

(78)

which is the inequality in Equation (76) leading to Equation (74) and then Equation (71). �

Because of Equation (71), we immediately have

Remark 3.5
For a function in an H1 space, the G1 full norm of the function is no larger than the H1 full norm
of the function

‖w‖G1(�)�‖w‖H1(�) ∀w∈H1 (79)

meaning that the smoothing operation results in a smaller (full) norm measure. This is because
the first term in the RHS of Equation (12) and that of Equation (23) are exactly the same.
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4. AN ERROR ESTIMATION

4.1. Error in G1 norm measure

In this section we only examine the error of point interpolation used to approximate a ‘target’
function, which is related to the errors in a W2 numerical model. We need to find out the h-
dependence of the error in both G1

h and L2 norms in relation to the ‘strong’ norm: the infinity
norm of the target function to be approximated by interpolation. For simplicity, we only consider
linear interpolation and the target function should be smoother, and hence the error norms will
be bounded by the infinity norm of the second derivative of the target function. To establish such
bound relations, we need to know exactly the relationship between the element/cell mesh and
smoothing domains. Figure 4 shows clearly such a relationship for our 1D problem. We first define
the interpolation error for the given target function w as

eI(x)=w(x)−Ihw(x) ∀x ∈Tq (80)

where Tq is defined in Section 2.1. We then state

Theorem 4.1
If the target function w∈G1

h,0 and w|Tq ∈C2(Tq), q=1, . . . ,Ne where w|Tq means w restricted

within Tq , the linear interpolation error in G1 norm satisfies, in general:

|eI|G1(�) =|w−Ihw|G1(�)�hmax
3crh
4

(
max

q=1,...,Ne
max
�∈Tq

|w′(�)|
)

(81)

where crh=hmax/hmin, and the error in L2 norm satisfies

|eI|L2(�) =|w−Ihw|L2(�)�h2max

(
max

q=1,...,Ne
max
�∈Tq

|w′′(�)|
)

(82)

In particular, when uniform mesh is used, and when the second derivative of w is constant in the
cells sharing the smoothing domains we further have

|eI|G1(�) =|w−Ihw|G1(�) =h1.5 14 |w′′
max| (83)

and the error in L2 norm satisfies

|eI|L2(�) =|w−Ihw|L2(�) =
h2√
120

|w′′
max|2 (84)

Proof
Consider a target function w∈G1

h,0 and w|Tq ∈C2(Tq),q=1, . . . ,Ne. Using Taylor’s expansion
with respect to xk (see Figure 4), there are exist a �∈Tq such that

w(x)=w(xk)+w′(xk)(x−xk)+ 1
2w

′′(�(x))(x−xk)
2 ∀x ∈Tq (85)

In Equation (85), we note the fact that � is in fact dependent on x . We also note that we do not
require the existence of w′′ on the boundary of Tq : meaning that the first derivative of w can
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‘jump’ there. Using Equation (8), the linear interpolant has to pass through the two nodes at xk
and xk+1, and hence should be given as

Ihw(x)=w(xk)+[w′(xk)+ 1
2w

′′(�(xk+1))hk](x−xk) ∀x ∈Tq (86)

Based on the definition equation (21), for our 1D problem and the kth smoothing cell, we have

ḡ(wk)= �w

�x
= 1

As
k

∫
�s
k

w(s)n1 ds= 1

As
k
(wk+1/2−wk−1/2)= 2

hk+hk−1
(wk+1/2−wk−1/2) (87)

where wk =w(xk), and h0=hNn =0. Substituting Equations (85) and (86) into (87), we then have
for the kth smoothing cell:

ḡ(wk−Ihwk︸ ︷︷ ︸
eI(xk)

) = 2

hk+hk−1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

w′′(�(xk+1/2))(xk+1/2−xk)
2− 1

2
w′′(�(xk+1)t)hk(xk+1/2−xk)

−1

2
w′′(�(xk−1/2))(xk−1/2−xk−1)

2

+1

2
w′′(�(xk))hk−1(xk−1/2−xk−1)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= 2

hk+hk−1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
h2k
4

[
1

2
w′′(�(xk+1/2))−w′′(�(xk+1))

]

−h2k−1

4

[
1

2
w′′(�(xk−1/2))−w′′(�(xk))

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (88)

Let

w′′
max= max

i=1,...,Ne
max
�∈Tq

|w′′(�)| (89)

and hence we shall have w′′
max 
=0, otherwise the second derivative of w will be zero everywhere

in the problem domain, and the interpolation will be exact: no need for error estimation. Using
Equations (1) and (2), Equation (88) becomes

∣∣∣∣∣∣∣ḡ(wk−Ihwk︸ ︷︷ ︸
eI(xk)

)

∣∣∣∣∣∣∣=
h2max

4

2

hk+hk−1︸ ︷︷ ︸
� 1

hmin

|w′′
max|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2

h2k
h2max︸ ︷︷ ︸
�1

w′′(�(xk+1/2))

|w′′
max|︸ ︷︷ ︸

−1�,�1

− h2k
h2max︸ ︷︷ ︸
�1

w′′(�(xk+1))

|w′′
max|︸ ︷︷ ︸

−1�,�1

−1

2

h2k−1

h2max︸ ︷︷ ︸
�1

w′′(�(xk−1/2))

|w′′
max|︸ ︷︷ ︸

−1�,�1

+ h2k−1

h2max︸ ︷︷ ︸
�1

w′′(�(xk))

|w′′
max|︸ ︷︷ ︸

−1�,�1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
chw�3

� 3h2max

4

hmax

hmin︸ ︷︷ ︸
crh<∞

|w′′
max|=hmax

3crh
4

|w′′
max| (90)
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The error defined in G1 norm in the global problem domain becomes

|w−Ihw|2G1
=

Ns∑
k=1

As
k |ḡ(ws−Ihws)|2�

Ns∑
k=1

hmax

(
hmax

3crh
4

|w′′
max|

)2

= Ns︸︷︷︸
� 1

hmax

hmax

(
hmax

3crh
4

|w′′
max|

)2

�
(
hmax

3crh
4

|w′′
max|

)2

(91)

Therefore, we have Equation (81).
We now examine the error defined in L2 norm in the global problem domain. Using

Equations (85) and (86), we have

|w−Ihw|Tq = 1

2
|w′′(�(x))(x−xk)

2−w′′(�(xk+1))hk(x−xk)|

= h2max

2
|w′′

max|

∣∣∣∣∣∣∣∣∣
w′′(�(x))

|w′′
max|︸ ︷︷ ︸

−1�,�1

(x−xk)2

h2max︸ ︷︷ ︸
�1

− w′′(�(xk+1))

|w′′
max|︸ ︷︷ ︸

−1�,�1

hk(x−xk)

h2max︸ ︷︷ ︸
�1

∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
�2

� h2max|w′′
max| (92)

The error defined in L2 norm becomes:

|w−Ihw|2
L2 =

Ne∑
q=1

∫
�e
q

(w−Ihw)2 dx�
Ne∑
q=1

hq(h
2
max|w′′

max|)2�
Ne∑
q=1

hmax(h
2
max|w′′

max|)2

= Ne︸︷︷︸
� 1

hmax

hmax(h
2
max|w′′

max|)2�(h2max|w′′
max|)2 (93)

which is Equation (82).
In Equation (90), we need to estimate chw and gave a very sloppy bound of 3. This is in fact a

very big overestimate in a usual situation. If a uniform mesh is used, and the target function has
a constant second derivative in the cells sharing a smoothing domain, chw should be zero for all
the inner smoothing domains. In such a situation, Equation (90) becomes

|ḡ(wk−Ihwk)|=
⎧⎨
⎩
h

4
|w′′

max|, k=1,Nn

0, k=2,3, . . . ,Nn−1
(94)

and Equation (91) becomes

|w−Ihw|2G1
=

Ns∑
k=1

As
k |ḡ(wk−Ihwk)|2= As

1|ḡ(w1−Ihw1)|2+As
Nn

|ḡ(wNn −IhwNn )|2

= h

2

(
h

4
|w′′

max|
)2

+ h

2

(
h

4
|w′′

max|
)2

=h

(
h

4
|w′′

max|
)2

= h3

42
|w′′

max|2 (95)
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which is Equation (83). Under the same condition, Equation (92) becomes

(w−Ihw)|Tq = 1
2w

′′((x−xk)
2−hk(x−xk)) (96)

and

|w−Ihw|2
L2 =

Ne∑
q=1

∫
Tq

(w−Ihw)2 dx= 1

4

Ne∑
q=1

∫
Tq

(w′′)2((x−xk)
2−h(x−xk))

2 dx

= 1

4
(w′′)2Ne

∫ h

0
(x2−hx)2 dx= 1

4
(w′′)2Ne

∫ h

0
(x4−2hx3+h2x

2)dx

= 1

4
(w′′)2Ne

(
1

5
x5− 1

2
hx4+ 1

3
h2x

3
)h

0
= h5

4
(w′′)2Ne

(
1

5
− 1

2
+ 1

3

)

= h5

4

1

30
(w′′)2 Ne︸︷︷︸

= 1
h

= h4

120
(w′′)2 (97)

which is Equation (84). This completes the proof. �

4.2. Comparison with H1 norm measures

In the standard weak form formulation such as FEM, we should have the following bounds. For
w∈H1

0 and uniform mesh [21, 34]

|w−Ihw|H1�h

(
max

q=1,...,Ne
max
�∈Tq

|w′′(�)|
)

(98)

and

|w−Ihw|L2�h2
(

max
q=1,...,Ne

max
�∈Tq

|w′′(�)|
)

(99)

The proof of these bounds in FEMwas based on Rolle’s Theorem. Although an exact and physically
meaningful comparison is difficult, because the space difference between H1

0 and G1
h,0, and the

errors in H1 and G1 norms carry different physical meanings. But an ‘indicative’ comparison
can be useful in some ways. For errors in semi-norm measure, Equation (98) is quite close to
Equation (81) for uniform mesh (crh=1.0): they all give a convergence rate of 1.0. Equation (83)
shows, however, the W2 formulation can provide a convergence rate in G1 semi-norm measure
of 1.5 at least for cases of even division of node-based smoothing domains. Compared with
Equation (98), the convergence rate is 50% higher.

Equation (83) was obtained under the conditions of (1) uniform division of elements/cells and
(2) constant second derivative of w in the cells sharing a smoothing domain. The first condition is
essentially the same ‘symmetrical condition’ of smoothing domains for the integral representation
to produce the first gradient of a function exactly [5]. When this condition is satisfied, the entire
interior smoothing domains become symmetrical, and the smoothing operation will reproduce the
first derivative exactly. The only error will be on the boundary where the symmetry condition
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cannot be satisfied. The second condition of constant second derivative of the target function
seems to be very strong, but it can be rather easy to be quite closely satisfied, because all we
need is the second derivative of the target function being constant in the cells sharing a smoothing
domain. When the mesh is refined, we can often expect the second derivative being approximately
constant locally. Therefore, the rate given in Equation (83) can be expected when the mesh is
reasonably fine. In practical applications, on the other hand, the first condition is rather very
difficult to meet, simply because it is rare to have uniform division of element/cells for practical
problems of complicated geometry. However, we can in fact to expect the smoothing domains to
be approximately ‘symmetric’ locally (hk ≈hk−1 for node k for our 1D problems). In such cases,
we can still expect Equation (83) holds approximately and hence a convergence rate of 1.5 in G1

semi-norm. This has been confirmed in many numerical examples presented in [22, 26, 33], where
numerical rates of about 1.4 were often found. We were excited about the higher convergence rate,
but could not give a good explanation then. We now have at least one possible explanation: the
use of (symmetric) smoothing domain reduces significantly the error measured in G1 semi-norm.
More in depth analysis on the errors is needed.

Let us now further examine for general problem with reasonably smoothing second derivative.
The coefficient chw in Equation (90) becomes

chw =

∣∣∣∣∣∣∣∣∣

⎡
⎢⎢⎢⎣12 h2k

h2max︸ ︷︷ ︸
�1

w′′(�(xk+1/2))

|w′′
max|︸ ︷︷ ︸

−1�,�1

− h2k
h2max︸ ︷︷ ︸
�1

w′′(�(xk+1))

|w′′
max|︸ ︷︷ ︸

−1�,�1

−1

2

h2k−1

h2max︸ ︷︷ ︸
�1

w′′(�(xk−1/2))

|w′′
max|︸ ︷︷ ︸

−1�,�1

+ h2k−1

h2max︸ ︷︷ ︸
�1

w′′(�(xk))

|w′′
max|︸ ︷︷ ︸

−1�,�1

⎤
⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣

≈ 1

2

1

h2max

|w′′(�(xk))|
|w′′

max|︸ ︷︷ ︸
�1

|h2k−h2k−1|=
1

2

hk(hk+hk−1)

h2max

|w′′(�(xk))|
|w′′

max|

∣∣∣∣∣∣∣∣1−
hk−1

hk︸ ︷︷ ︸
≈1

∣∣∣∣∣∣∣∣ (100)

If the lengths of the two neighboring elements of the interior nodes are different, the contribution of
these nodes to the error norm can be in control (when mesh is refined), and there the convergence
rate will be about 1.0 and not 1.5. However, chw in Equation (90) can be a very small number. If,
for example, there is a 20% length difference in the two neighboring elements of all the interior
nodes (hk−1/hk =0.8), we shall have chw≈0.2. This means that even the rate of convergence
cannot be improved, the results will still be about 5 times more accurate. This was also observed
in the ES-FEM where the edge-based smoothing domains are not quite symmetric, but were often
found about 2–10 times more accurate in G1 norm compared with that of FEM measured in H1

using the same mesh [28]. In extreme cases, where all the smoothing domain are not symmetric
at all, the results of the W2 formulation will still be better than the standard weak formulation, as
shown in Equations (98) and (81).

For errors in L2 norms, the convergence rates given by Equations (82) and (84) are the same, and
it is also the same as in the standard weak form formulation such as FEM given in Equation (99)
where Rolle’s theorem is used the in proof process. The bound given by Equation (84) is, however,
about 10 times tighter than Equation (82). Note again that such comparisons are made based on
different error norms, and hence not exactly comparable. In addition, the interpolation error and
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the solution error are different, and hence whether the solution error of a model can be bounded
by the interpolation errors need further investigations. More in depth error analyses are needed.

5. CONCLUSION

In this paper we have established for the first time G1 spaces with a set of important inequalities,
which leads to the following major findings:

1. If a function is constructed using a set of linearly independent nodal shape functions for
all the nodes in a discrete model, and at least a minimum number of linearly independent
smoothing domains are used to evaluate the semi norm, the function is in a G1

h space.
2. The full G1 norm of a function in a G1 space is equivalent to the L2 norm of the nodal

values of the function (First inequality).
3. The semi G1 norm of a function in a G1

h space is equivalent to the L2 norm of the nodal
values of the function (Second inequality).

4. The full norm of a function in a G1
h space is equivalent to the semi-norm (Third inequality).

5. The smoothing operation results in a smaller G1 semi-norm measure compared with the H1

semi-norm measure. This is the fundamental inequality for the so-called softening effects.
6. Based on the G1 space theory, a W2 formulation of any physically stable problem will be

stable and converge. It is applicable to any problems to which the standard weak formulation
is applicable.

Some additional analyses on G space theory can be found in [35]. The author is aware of that
we have in fact created much more questions than the answers and conclusions, such as what
would be the generalization of G1 to Gm (where m is non-negative integer), what would be the
dual space G−1, what kind of linear functionals can we allow, etc. At this stage, we can expect
that the dual space G−1 should be ‘smaller’ than the H−1, and G−1 is properly only a little ‘larger’
than G1 (in contrast we know that H−1 is much ‘larger’ that H1). In addition, h-dependence of
the solution error as well as the regularity issues are not yet clear. We know now the G space
offers a theoretical foundation for W2 formulations that work well (stable and convergent), but
how well is yet to be answered. To provide answers to all these and many other questions one may
have, much more works and efforts are required. The authors hope this paper can initiate a study
in the G spaces and W2 formulation related areas and hopeful many can join us to accomplish a
class of more effective computational methods. Helps from the mathematical community is greatly
appreciated on these theoretical issue. Part II of this paper will present W2 formulation for solid
mechanics problems with 2D and 3D examples.
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